

Bachelor of Science (B.Sc.) Semester-VI (C.B.S.) Examination

PHYSICS

ELECTRONICS, FIBER OPTICS, COMMUNICATION AND DIGITAL ELECTRONICS

Paper-2

Time : Three Hours]

[Maximum Marks : 50

N.B. :— (1) All questions are compulsory.

(2) Draw neat diagrams wherever necessary.

EITHER

1. (A) Draw the circuit diagram of an Op-Amp as inverting amplifier. Derive an expression for its voltage gain, input resistance and output resistance. 5
- (B) (i) Explain the concept of feedback in amplifiers. Derive the expression for gain of an amplifier with feedback. 3
- (ii) Calculate the voltage gain of the negative feedback amplifier having $A = 2000$ and $\beta = 1/10$. 2

OR

- (C) Explain class A, class B, class AB and class C amplifiers. 2½
- (D) Explain the principle and working of a phase shift oscillator with necessary circuit diagram. 2½
- (E) Explain the use of Op-Amp as Integrator. 2½
- (F) In a colpitts oscillator, $C_1 = 0.001 \mu\text{F}$, $C_2 = 0.01 \mu\text{F}$ and $L = 5 \mu\text{H}$. Find the required gain for oscillation and frequency of oscillation. 2½

EITHER

2. (A) What is an optical fiber ? Give its structure and explain the propagation of light waves in an optical fiber. 5
- (B) (i) Define Acceptance Angle. Derive an expression for acceptance angle of an optical fiber. 3
- (ii) A signal of power $4.2 \mu\text{W}$ exists at the entrance of 0.1 km long fiber. Calculate the signal attenuation of the fiber if the power at the other end of fiber is $2.1 \mu\text{W}$. 2

OR

(C) Explain single mode, step index fiber and multi mode graded index fiber. 2½

(D) What is numerical aperture ? Obtain an expression for numerical aperture of an optical fiber. 2½

(E) Explain Electrical bandwidth, Optical bandwidth and bandwidth length product. 2½

(F) Compute the numerical aperature and acceptance angle of an optical fiber surrounded by air. The refractive index of core is 1.5 and that of cladding is 1.45. 2½

EITHER

3. (A) What is amplitude modulation ? Obtain an expression for the amplitude modulated wave and show that the frequency spectrum of the modulated wave consists of the carrier wave and upper and lower sidebands. 5

(B) (i) Derive an expression for the fraction of total power carried by the side bands in amplitude modulated wave. 3

(ii) A sinusoidal carrier voltage of frequency 1 MHz and amplitude 100 V is amplitude modulated by a sinusoidal voltage of frequency 5 kHz producing 50% modulation. Calculate the frequency and amplitude of upper sideband term. 2

OR

(C) Explain modulation index, carrier swing and deviation ratio for frequency modulation. 2½

(D) A radio signal is prepared by frequency modulating a 100 MHz carrier with a 4 kHz audio tone, causing a frequency deviation of 25 kHz. Determine the carrier swing and modulation index for this modulated wave. 2½

(E) Obtain an expression for the frequency modulated wave and show that the frequency spectrum consists of the carrier wave and infinite number of sidebands. 2½

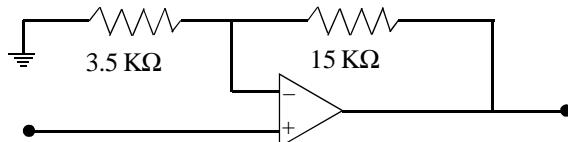
(F) What is frequency modulation ? What are the merits and demerits of frequency modulation ? 2½

EITHER

4. (A) Explain Binary number system, Hexadecimal number system and their interconversions. 5

(B) (i) What is Binary Coded Decimal (BCD) system ? Encode the decimal numbers $(56)_{10}$, $(628)_{10}$ and $(5179)_{10}$ into 8421 BCD code. 3

(ii) Convert octal number $(635.472)_8$ into binary form. 2


OR

(C) Explain AND and OR basic logic gates with truth table. 2½
 (D) Explain how can you obtain basic logic gates from NAND gates. 2½
 (E) Explain the working of full adder with truth table. 2½
 (F) Simplify the logical expression

$$Y = (A + B) (A + \bar{B}) (\bar{A} + B) \quad \text{2½}$$

5. Attempt any **ten** :

(i) State any two characteristics of an ideal OP-AMP.
 (ii) Why and which type of feedback is necessary in oscillating circuits ?
 (iii) Calculate the voltage gain of the following operational amplifier circuit.

(iv) What is dispersion in an optical fiber ?
 (v) State two advantages of an optical fiber.
 (vi) Find critical angle of an optical fiber. Given : $\mu_{\text{core}} = 2$ and $\mu_{\text{cladding}} = \sqrt{3}$
 (vii) Give any two disadvantages of amplitude modulation.
 (viii) A carrier wave of frequency 10 MHz and peak value 10 volts is amplitude modulated by a 5 kHz sine wave of amplitude 6 volts. Determine the bandwidth of the transmitted AM signal.
 (ix) Which type of modulation is used in the TV picture transmission ?
 (x) What are logic gates ?
 (xi) State DeMorgan's theorem.
 (xii) State limitation of Half Adder. 1×10=10